Direct and indirect pathways for choosing objects and actions

Okihide Hikosaka,1 Hyoung F. Kim,2,3 Hidetoshi Amita,1 Masaharu Yasuda,4 Masaki Isoda,5 Yoshihisa Tachibana6 and Atsushi Yoshida7
1Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, 49 Convent Drive, Bldg. 49, Rm. 2A50, Bethesda, MD 20892-4435, USA
2Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, Korea
3Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
4Department of Physiology, Kansai Medical University, Hirakata, Japan
5Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
6Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
7Functional Architecture Imaging team, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan

Keywords: caudate tail, monkey, reward value, saccade, substantia nigra

Abstract
A prominent target of the basal ganglia is the superior colliculus (SC) which controls gaze orientation (saccadic eye movement in primates) to an important object. This ‘object choice’ is crucial for choosing an action on the object. SC is innervated by the substantia nigra pars reticulata (SNr) which is controlled mainly by the caudate nucleus (CD). This CD-SNr-SC circuit is sensitive to the values of individual objects and facilitates saccades to good objects. The object values are processed differently in two parallel circuits: flexibly by the caudate head (CDh) and stably by the caudate tail (CDt). To choose good objects, we need to reject bad objects. In fact, these contrasting functions are accomplished by the circuit originating from CDt: The direct pathway focuses on good objects and facilitates saccades to them; the indirect pathway focuses on bad objects and suppresses saccades to them. Inactivation of CDt deteriorated the object choice, because saccades to bad objects were no longer suppressed. This suggests that the indirect pathway is important for object choice. However, the direct and indirect pathways for ‘object choice’, which aim at the same action (i.e., saccade), may not work for ‘action choice’. One possibility is that circuits controlling different actions are connected through the indirect pathway. Additional connections of the indirect pathway with brain areas outside the basal ganglia may also provide a wider range of behavioral choice. In conclusion, basal ganglia circuits are composed of the basic direct/indirect pathways and additional connections and thus have acquired multiple functions.

Introduction
The basal ganglia contribute to decision making (Hikosaka et al., 2018). A typical process of decision making is to choose an object (object choice) and then choose an action (action choice) to manipulate the object, which leads to a rewarding outcome (Kim & Hikosaka, 2015). Object choice is largely controlled by the caudate nucleus and its downstream circuits (Hikosaka et al., 2000), while action choice is largely controlled by the putamen and its downstream circuits (Samejima et al., 2005).

Neural mechanisms in the basal ganglia have been revealed especially for object choice. To choose an object, most animals first look at the object with a saccade (i.e., quick rotation of eyes and/or head) which is controlled mainly by the superior colliculus (SC). SC receives excitatory inputs from many other brain areas, including the frontal eye field (FEF), supplementary eye field (SEF), lateral intraparietal cortex (LIP) and cerebellum (May, 2006). In addition, SC receives GABAergic inhibitory inputs from the basal ganglia, specifically the substantia nigra pars reticulata (SNr; Hikosaka & Wurtz, 1983c), which plays a unique role in controlling saccades (Hikosaka & Wurtz, 1983b). As SNr neurons keep firing rapidly, SC neurons, especially pre-saccadic neurons, are tonically inhibited by SNr neurons. Reversible inactivation of SNr neurons (with muscimol injection) causes irrepressible saccades to the contralateral side of the monkey (Hikosaka & Wurtz, 1985b) and rat (Sakamoto & Hikosaka, 1989). This suggests that the basal ganglia are crucial for suppressing body movements. If this suppression does not work, many body parts...
would move persistently, which often occurs in patients with various kinds of basal ganglia disorders, including Huntington’s disease, dystonia and hemiballismus (Denny-Brown, 1960).

In the normal condition, SC-projecting SNr neurons stop firing, which causes a disinhibition of SC neurons and facilitates saccades to the contralateral side (Hikosaka & Wurtz, 1983c). The inhibition of SNr neurons is caused by the GABAergic inhibitory input from the caudate nucleus (CD; Yoshida & Precht, 1971; Hikosaka et al., 1993). Therefore, the CD-SNr-SC circuit is capable of facilitating a desired saccade (Hikosaka et al., 2000). Such a mechanism based on the sequential inhibitory connections is suitable for choice-based decision making. To reach the goal, CD neurons must be able to judge the value of each saccade or its target object. This question evolved to be multiple questions which are related to many aspects of brain functions, including short-term vs. long-term memory, voluntary vs. automatic behavior (Fig. 1), direct vs. indirect pathway (Fig. 2) and parallel circuits and their integration (Fig. 4). We will discuss them below.

Caudate head circuit

According to classical circuit models, the inputs to the basal ganglia are sent from the cerebral cortex to the striatum (including CD), and the outputs are sent from SNr or the globus pallidus internus (Gpi) to the thalamus or midbrain motor circuits (Alexander & Crutcher, 1990). The striatum is thought to be involved in multiple functions, because different areas in the striatum receive inputs from different regions of the cerebral cortex and other areas (Kemp & Powell, 1970; Selemon & Goldman-Rakic, 1985). Differential functions may be maintained by parallel and separate circuits originating from different striatal areas (Alexander et al., 1986). Such parallel mechanisms work clearly in the CD-SNr-SC circuit (Fig. 1).

A majority of neurons in the striatum are GABAergic projection neurons (medium spiny neurons) and become active only in limited conditions, otherwise quiet. The head of the caudate nucleus (CDh)

![Diagram of parallel circuits in the basal ganglia](image-url)

Fig. 1. Parallel circuits in the basal ganglia. (A) Sagittal view of the caudate nucleus in the macaque monkey. It is roughly divided into caudate head (CDh), caudate body (CDb), and caudate tail (CDt). They are actually located beneath the cerebral cortex. (B) Parallel circuits originating from CDh and CDt, both of which control saccadic eye movement by sending signals to the superior colliculus (SC) through the substantia nigra pars reticulata (SNr). These circuits are separate until they reach SC: CDh to rostral-ventral-medial part of SNr (rvSNr), CDt to caudal-dorsal-lateral part of SNr (cdSNr). Both circuits process reward values of visual objects, but in completely different ways: (i) CDh circuit uses short-term memories of object values and chooses objects flexibly, (ii) CDt circuit uses long-term memories of object values and chooses objects stably. CDh and CDt are innervated by different groups of dopamine neurons in the substantia nigra pars compacta (rvSNc and cdSNc).

![Diagram of direct and indirect pathways](image-url)

Fig. 2. Direct and indirect pathways of CDt circuit. CDt processes visual objects, mainly based on inputs from visual cortical areas. The direct pathway is composed of two serial inhibitory connections: CDt to cdSNr, cdSNr-SC. Its function is to choose good objects. The indirect pathway is composed of three serial inhibitory connections: CDt-cvGPe, cvGPe-cdSNr and cdSNr-SC. Its function is to reject bad objects. cvGPe, caudal-ventral part of the globus pallidus externus.
Caudate tail circuit

The caudate nucleus is divided into three parts (i.e., head, body and tail; Fig. 1A), especially in primates (humans and monkeys), although there are no clear borders. Yet, CDh and CDt receive inputs from mostly different areas (e.g., frontal cortex to CDh, temporal cortex to CDt; Yeterian & Van Hoesen, 1978). Even when one area projects to both CDh and CDt, each neuron projects to either CDh or CDt (Griggs et al., 2017).

GABAergic projection neurons (medium spiny neurons) in CDt are very quiet, and most of them show visual responses with two prominent features: (i) object selective, (ii) spatially selective (Yamamoto et al., 2012). When many fractal objects are presented one at a time, CDt neurons respond to only a few of them with different magnitudes. This is the case even when the objects are completely new. These results suggest that each CDt neuron receives inputs randomly from some visual neurons in the inferotemporal cortex (ITC) and other areas. As a population, however, CDt neurons respond to all objects.

Their visual responses are also spatially selective, with receptive fields mostly somewhere in the contralateral hemisphere (Yamamoto et al., 2012). They often do not respond to objects positioned at the center. This suggests that CDt neurons receive input from a wide part of ITC where visual topographic map is represented (Boussaoud et al., 1991; Yasuda et al., 2010). The spatial selectivity turned out to be critical for the function of CDt circuit, as explained below.

It was found that the CDt circuit controls saccades strongly and selectively. First, weak electrical stimulation (often 20 μA) in CDt evokes saccades to the position which is close to the receptive fields of adjacent CDt neurons (Yamamoto et al., 2012). Such weak stimulation causes a strong inhibition in cdlSNr neurons, and a majority of cdlSNr neurons are antidromically activated by stimulation of SC (Yasuda & Hikosaka, 2015).

These results suggest that CDt controls saccades selectively using CDt-cdlSNr-SC circuit (Fig. 1). Importantly, this circuit is basically separate from CDh circuit, because CDt stimulation and CDh stimulation inhibit separate groups of SNr neurons. Moreover, these groups are separated spatially: CDt-inhibited neurons in cdlSNr, CDh-inhibited neurons in the rostral-ventral-medial part of SNr (rvmSNr; Yasuda & Hikosaka, 2015). Therefore, there are, at least, two parallel circuits in the basal ganglia that control saccades (Fig. 1B). Whether these circuits connect to the same or different neurons in SC remains a question.

However, it is still unclear whether the parallel circuits are completely separated. CDt or CDh stimulation sometimes causes an excitation in either cdlSNr or rvmSNr neurons, not consistently following CDt-cdlSNr or CDh-rvmSNr circuit. Such an excitation may be induced by the indirect pathway which is mediated by the globus pallidus externus (GPe) and/or subthalamic nucleus (STN) (Yasuda & Hikosaka, 2015). This is an important question which will be discussed later.

Stable value coding in CDt circuit

We previously found that cdlSNr neurons are characterized by their simple visual responses (see above). Therefore, we predicted that CDt-cdlSNr-SC circuit simply transfers the visual information from ITC. To test this hypothesis, we used a flexible object value task (Yasuda et al., 2012): In one block of trials, object A (not B) is associated with a reward; in the other block, object B (not A) is associated with a reward. This is equivalent to 1DR task. When two objects (A and B) are presented at the same time, the monkey almost always chooses whichever object is currently associated with a reward. Yet, the response of a CDt neuron (Kim & Hikosaka, 2013; Yamamoto et al., 2013) or a cdlSNr neuron (Yasuda et al., 2012) to a fractal object is invariable across trials, even when the predicted reward outcome has been reversed. Thus, neither CDt nor cdlSNr is sensitive to the predictive reward value. These results

© 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
European Journal of Neuroscience, 1–9
appear to confirm the hypothesis described above: CDt circuit is insensitive to value memory. This turned out to be wrong.

In real life, there are so many objects and individuals (e.g., food, friends, family ...), and their values do not change often or quickly. But to learn their values, we may need to experience these objects many times. Based on this thought, we tried a new procedure: stable value learning (Yasuda et al., 2012). The subject (monkey) viewed many fractal objects, half associated with a large reward (to be called ‘good objects’) and the other half with a small reward (‘bad objects’). This was done repeatedly across days. We then presented some of the fractal objects and let the monkey view (or not view) them. Even though no reward was delivered by this free viewing, the monkey tended to look at good objects and avoid bad objects. Notably, the free-viewing bias developed slowly and took about 5 days of object-reward association before reaching the maximum bias.

We then discovered that the visual responses of CDt neurons (Kim & Hikosaka, 2013; Yamamoto et al., 2013) and cdlSNr neurons (Yasuda et al., 2012) developed biases in response to good vs. bad objects. Most CDt neurons are more excited by good objects than bad objects; some developed the opposite bias (Kim & Hikosaka, 2013). However, the bias is often unclear for individual neurons, because the object selectivity remained robust. In contrast, cdlSNr neurons discriminated good objects and bad objects completely: inhibition by good objects vs. excitation by bad objects (Yasuda et al., 2012). The inhibition of cdlSNr neurons would cause a disinhibition of SC neurons, thus facilitating saccades to good objects; the excitation of cdlSNr neurons would cause an enhanced inhibition of SC neurons, thus suppressing saccades to bad objects. The value coding also developed slowly in about 5 days. These features are exactly how monkeys behave during free-viewing task. This slow learning explains the lack of flexibility of CDt and cdlSNr neurons, described above.

In addition, CDt and cdlSNr neurons have three surprising features: high-capacity memory, long-term memory and automatic peripheral vision (Fig. 1B). Monkeys learned so many fractal objects (so far up to 300 objects) using the stable value learning task, and became able to classify them into good and bad objects during the free-viewing task (Yasuda et al., 2012; Kim & Hikosaka, 2013; Yamamoto et al., 2013). An equivalent classification occurs in individual neurons as well, especially in cdlSNr neurons: inhibition by all good objects and excitation by all bad objects (Yasuda et al., 2012).

Moreover, the behavioral and neuronal value coding is very stable. We sometimes stopped showing a group of good–bad objects for a long time (e.g., > 100 days) and then presented them suddenly to the monkey. cdlSNr neurons were still inhibited by good objects, and the monkey’s gaze was attracted by them; cdlSNr neurons were excited by bad objects and monkey’s gaze avoided them (Yasuda et al., 2012). This occurs even when the monkey viewed many other objects during the long delay period. These results indicate that the value coding is based on long-term memories of object values.

Automatic peripheral vision is also critical. The visual responses of CDt and cdlSNr neurons as well as the monkey’s gaze during free viewing are biased even when the reward outcome is absent or incongruent (Yasuda et al., 2012; Kim & Hikosaka, 2013; Yamamoto et al., 2013). These processes occur even when the objects are located in periphery. This is surprising because it is thought that peripheral vision is too poor to discriminate objects (Strasburger et al., 2011). In any case, CDt-cdlSNr-SC circuit discriminates objects automatically by their stable value, even when they are located in periphery. Notably, the intermediate part of the caudate nucleus (caudate body, CDb; Fig. 1A) shares the features of CDh and CDt: it contains neurons with flexible values and neurons with stable values (Kim & Hikosaka, 2013).

Object skill
The importance of CDt-cdlSNr-SC circuit was shown by a visual search task (Ghazizadeh et al., 2016b). One good object and several bad objects are chosen randomly from > 100 good/bad objects and presented simultaneously. A large reward is delivered if the monkey looks at the good object; a small reward if one of the bad objects is chosen. After the repeated object–reward association, the monkey became able to make a saccade, often directly, to the good object presented in periphery. The saccade reaction time is sometimes less than 150 ms.

This behavior is crucial in real life. There are many objects around us, many of which are unexpectedly present, and their locations are unexpected. Without automaticity, we would need to explore all of these objects and evaluate them. CDt-cdlSNr-SC circuit would thus enable us (and animals) to obtain a larger amount of reward per time, which is called ‘object skill’ (Hikosaka et al., 2013).

Notably, the uniqueness of CDt was demonstrated previously by Mishkin et al. (1984), which is related to the multiplicity of memory. They invented a memory task in which multiple pairs of objects are presented sequentially and the subject chooses the good object for each pair. In the monkey, the learning of this task was impaired by local lesions of CDt (Fernandez-Ruiz et al., 2001). Humans with lesions in the hippocampal area can learn this task, although their episodic memories are devastated (Bayley et al., 2005). These results confirmed the theory that memory is classified into, at least, two types: conscious memory (which may be called declarative or explicit memory) and subconscious memory (which may be called non-declarative or implicit memory).

Roles of DA neurons in reward value memory
How then do CDh circuit and CDt circuit acquire reward value memory in different manners? It is known that dopamine (DA) controls synaptic plasticity in the basal ganglia, especially cortico- striatal synapses (Reynolds & Wickens, 2002; Surmeier et al., 2007). In an experiment using 1DR task, dopamine D1 antagonist injected into the visual region of CDh delayed the saccade to the reward-associated object, whereas dopamine D2 antagonist in CDh delayed the saccade to the reward-unassociated object (Nakamura & Hikosaka, 2006). These results suggest that DA neurons contribute to the flexibility of CDh neurons, according to a computational model (Hong & Hikosaka, 2011). This model is based on the discovery that DA neurons encode reward prediction error (RPE): Excitation (or inhibition) if reward or its prediction is higher (or lower) than expected based on the recent experience (Schultz, 1998).

We then found that different groups of DA neurons innervate CDh and CDt: rostral-ventral-medial part of substantia nigra pars compacta (rvmSNc) to CDh, caudal-dorsal-lateral part of substantia nigra pars compacta (cdlSNc) to CDt (Kim et al., 2014). Importantly, CDt-projecting DA neurons do not encode RPE, but instead encode stable values, similarly to CDti and cdlSNr neurons (Kim et al., 2015). The stable value coding develops earlier in CDt-projecting DA neurons than CDt/cdlSNr neurons, suggesting that the DA neurons contribute to the long-term memory of object value in CDt-cdlSNr circuit. On the other hand, CDt-cdlSNr circuit is likely
to contribute to the discrimination of visual objects in the DA neurons, as the electrical stimulation of CDt activates CDt-projecting DA neurons orthodromically (as well as antidromically), which may be mediated by the axon collaterals of cdISNr neurons (Fig. 5 in Kim et al., 2015).

Notably, cdISNr includes DA neurons that are excited by both rewarding and dangerous objects (salience type), while DA neurons in rvmSNc are mostly inhibited by dangerous objects (value type; Matsumoto & Hikosaka, 2009). In fact, gaze is attracted automatically to dangerous object as well as rewarding objects (Ghazizadeh et al., 2016a). However, it is still unclear whether cd/cdISN neurons are sensitive to dangerous objects.

Direct and indirect pathways

The direct and indirect pathways are thought to control motor behavior in opposite manners: facilitation by the direct pathway and inhibition by the indirect pathway (Hikosaka et al., 2000). This idea is originally based on the neuronal connections (Smith et al., 1998). The output of the direct pathway would be disinhibition induced by two serial inhibitory connections (e.g., CD-SN and SNr-SC). The output of the indirect pathway would be an enhanced inhibition induced by three serial inhibitory connections (e.g., CD-GPe, GPe-SNr, SNr-SC). This scheme is confirmed by recent studies in which the direct and indirect pathways were activated selectively (Kravitz et al., 2010).

These data raise a further question: Do the direct and indirect pathways aim at the same behavior (e.g., hand movement) or different behaviors (e.g., hand and leg movements)? No clear answer has been provided so far, except for the CDt circuit (Fig. 2). Anatomical studies showed that CDt projects to the cdISNr and the caudal-ventral GPe (cvGPe) and does so locally and densely (Saint-Cyr et al., 1990; Kim et al., 2017). cvGPe then projects to cdISNr locally and densely (Kim et al., 2017). Electrophysiological studies confirmed that these connections are inhibitory: direct pathway (CDt-cdISNr; Yasuda & Hikosaka, 2015) and indirect pathway (CDt-cvGPe, cvGPe-cdISNr; Kim et al., 2017; Fig. 2). Interestingly, a very similar set of the direct and indirect pathways was already shown in the rat (Smith & Bolam, 1991). The role of STN in the indirect pathway is less clear: Some STN neurons project to cdISNr, but not cvGPe-cdISNr; Kim et al., 2017). These data suggest that the direct and indirect pathways of CDt, both, aim at saccadic eye movement by acting on SC.

Another important question is about the transformation of information to behavior. Do the direct and indirect pathways transform the same or different types of information to behavior? This was shown clearly for the CDt circuit. First, a majority of neurons in each region (CDt, cdISNr, cvGPe) are visually sensitive, responding to many visual (fractal) objects selectively (selectivity higher in CDt than cdISNr, cvGPe; Yamamoto et al., 2012; Yasuda et al., 2012; Kim & Hikosaka, 2013; Kim et al., 2017). Furthermore, a majority of these neurons encode stable values based on long-term object value memories (Kim & Hikosaka, 2013; Yamamoto et al., 2013; Yasuda & Hikosaka, 2015; Kim et al., 2017). These data detail the above statement: The direct and indirect pathways of CDt aim at saccadic eye movement based on the stable values of visual objects.

The final question is as follows: What is the behavioral goal of the direct and indirect pathways?

Overall, bad objects are encoded by the indirect pathway, whereas good objects are encoded by the direct pathway (Kim et al., 2017). Typically, bad objects inhibit cvGPe neurons, disinhibit cdISNr neurons and then inhibit SC neurons, thus suppressing saccades to the bad objects. In contrast, good objects inhibit cdISNr neurons and then disinhibit SC neurons, thus facilitating saccades to the good objects. Then, the final conclusion is as follows: CDt circuit suppresses saccades to bad objects using the indirect pathway and facilitates saccades to good objects using the direct pathway.

These data suggest that the projection neurons in CDt are divided into two groups (Fig. 2): (i) cvGPe-projecting neurons (which prefer bad object), and (ii) cdISNr-projecting neurons (which prefer good objects). This is supported anatomically by injecting different tracers in cvGPe and cdISNr: Many neurons in CDt were retrogradely labeled, but mostly from either cvGPe or cdISNr (Amita et al., 2016). Physiologically, CDt contains good-preferring neurons (i.e., excited more by good than bad objects) and bad-preferring neurons (Kim & Hikosaka, 2013). However, good-preferring neurons are more common than bad-preferring neurons, although cvGPe-projecting neurons are as common as cdISNr-projecting neurons, anatomically.

Rejection of bad objects by CDt circuit

We then asked whether CDt circuit is necessary for choosing objects automatically based on their stable values. To address this question, we reversely inactivated CDt neurons by locally injecting a GABA agonist (muscimol; Kim & Hikosaka, 2013; Fig. 3B). This method is useful because functions of different brain areas can be examined repeatedly in the same animal (Hikosaka & Wurtz, 1985a).

To test the effect of stable values, we used ‘free-looking task’ (Fig. 3C). The subject (monkey) performed a simple fixation task to obtain reward. In some trials, a fractal object appeared early on the left or right side. The monkey often looked at the object spontaneously, but no reward was delivered after the saccade. The object was chosen randomly from many fractals (>100; Fig. 3A) which the monkey had viewed previously in association with a large or small reward (i.e., good or bad object). Normally, the frequency of the free looking was higher for good objects than bad objects (Kim & Hikosaka, 2013; Fig. 3D, left), as shown in the free-viewing task (Yasuda et al., 2012; Yamamoto et al., 2013).

After muscimol injection in CDt, this gaze bias disappeared (Fig. 3D, right), but this happened only when the object was presented on the side contralateral to the inactivated CDt (Fig. 3D, right; Kim & Hikosaka, 2013). Bad object is critical for this change: The frequency of saccades to bad objects increased, whereas the frequency of saccades to good objects showed no change. This result suggests that saccades to bad objects are suppressed only by the indirect pathway of CDt circuit, but saccades to good objects are facilitated by the direct pathway as well as other brain areas. The dysfunction is contralateral selective because cvGPe neurons (as well as CDt neurons) respond selectively to contralateral objects (Kim & Hikosaka, 2013). This conclusion raises an important concept, as shown below.

In real life, we (and animals) are surrounded by so many objects (including other animals), but we need to focus on a small number of the objects at each time point (Duncan, 1980). This is done by attention and/or gaze (Hikosaka et al., 2013). To understand the underlying neural mechanism, most studies aim at the neural and behavioral (e.g., perceptual) responses to the focused (or attended) objects. Then, how should the brain deal with other (unfocused) objects? There have been few studies that addressed this question (Bichot & Schall, 1999). Theoretically, the brain needs to activate two contrasting mechanisms: (i) aim attention/gaze to the focused objects, (ii) avert attention/gaze from the unfocused objects. This is
exactly what the direct and indirect pathways of CDt circuit are doing. Moreover, the second mechanism (avert attention/gaze from the unfocused objects) is essential for CDt circuit, and probably also for other circuits (e.g., attention circuit).

There is another important factor: position. For example, to facilitate a saccade to the left side, it is important to suppress saccades to the right side. This is actually what a previous study on cats indicated (Jiang et al., 2003; Some SNr neurons (e.g., left side) are excited by contralateral visual stimuli (right side) and project to the contralateral SC (right side), thus suppressing saccades to the left side. This would act as the rejection of non-targeting saccades based on their positions, rather than their values. If the excitation of such SNr neurons is mediated by the indirect pathway (i.e., disinhibition), this part of the indirect pathway would be activated by good objects, rather than bad objects. This is an interesting possibility and should be investigated in near future.

General mechanisms of indirect pathway—hypothesis

Discussion so far suggests that a fundamental role of the direct–indirect pathways is to choose objects based on the same action (saccade; Fig. 4A). However, this does not indicate that the direct and indirect pathways work only within a local circuit (i.e., CDt circuit; Joel & Weiner, 1997). In fact, CDt circuit and CDh circuit seem to interact with each other by extending the indirect pathway to the other (Yasuda & Hikosaka, 2015).

Moreover, once an important object is chosen, an appropriate action needs to be chosen. For example, if a fruit is found while walking, we need to reach our hand to the fruit. It is likely that different circuits in the basal ganglia contribute to different body movements (Alexander & Crutcher, 1990), including walking and reaching (Fig. 4B). To control such a behavioral switching (‘walking’ then ‘reaching’), these two circuits must interact with each other. The indirect pathway would be suitable for this goal, according to our circuit model (below).

We hypothesize that the two motor circuits (for action X and Y) are connected through the indirect pathway which is mediated by GPe and STN (Fig. 4B). It is known that STN receives inputs from GPe and sends outputs to SNr, GPi or GPe, which was shown anatomically (Parent & Hazrati, 1995; Smith et al., 1998; Bolam et al., 2000) and electrophysiologically (Nambu et al., 2000; Tachibana et al., 2008). However, the connections of STN as well as GPe are often not restricted to a particular basal ganglia circuit (Joel & Weiner, 1997; Parent et al., 2000). If STN receives inputs mainly from GPe in X-circuit and sends output mainly to SNr/GPi in Y-circuit (Fig. 4B), action Y would be suppressed when action X is facilitated. This mechanism would be important to choose action X, because action Y needs to be suppressed. It is also critical for sequential behavior: action Y (e.g., walking), then action X (e.g., reaching). According to Joel & Weiner (1997), this is called ‘open indirect pathway’ (Fig. 4B), instead of ‘closed indirect pathway’ (Fig. 4A). This ‘open indirect pathway’ mechanism suggests that two groups of striatal neurons, which control the direct and indirect pathways respectively, may be active simultaneously. This actually occurs in natural behavior (Cui et al., 2013; Tecuapetla et al., 2016).

However, the across–circuit interaction must occur in different combinations depending on the goal of natural behavior. To this end, the efficacy of individual STN connections needs to be changed depending on the context. Mechanistically, this requires connections with many brain areas, with which various kinds of contextual information can be shared. In fact, STN has such connections, for example, with the striatum (Nakano et al., 1990; Smith et al., 1990), PPTg (Mena-Segovia et al., 2004; Kita & Kita, 2011) and the frontal cortex (Monakow et al., 1978; Nambu et al., 1996; Inase et al., 1999; Haynes & Haber, 2013). STN is
The role of STN in switching to the thought process (mentioned above) is generally important. For example, when a fox tries to catch a rat, the fox often stops moving until the rat becomes reachable. During the waiting period, most movement circuits should be suppressed while ‘thought’ circuits should be activated. An equivalent process actually works before memory-guided saccades (Yasuda & Hikosaka, 2017). After a visual cue stimulus appears to indicate the future target location, the subject must keep suppressing a saccade while remembering the position until the saccade is allowed. This may be caused by the interaction between a ‘thought’ circuit and a motor (saccade) circuit. The indirect pathway of the ‘thought’ circuit is connected, through STN, to SNr neurons in CD-SNr-SC circuit. In fact, most SNr neurons related to memory-guided saccades are excited in response to the visual cue (due to the input from STN) and later inhibited before the saccade. This reflects the process: first, wait and think, and then make the targeting saccade.

Conclusion

The basal ganglia are a large subcortical area and have multiple functions, which are thought to be controlled by multiple circuits. Notably, each circuit, which controls a particular action, is composed of two parallel pathways: The direct pathway that facilitates the action and the indirect pathway that suppresses the action. Our studies on CD-SNr-SC circuit confirmed these schemes. Depending on the origin within the caudate nucleus, CD-SNr-SC circuit is divided into two parallel circuits: CDh circuit and CDt circuit. Both of these circuits choose a good object and guide the same action—saccadic eye movement—to the good object. The object choice by CD-SNr-SC circuit is based on the previous experiences of objects (learning) which is supported by DA neurons.

Why then are the two circuits (CDh circuit and CDt circuit) necessary for choosing good objects? Learning of CDh circuit is based on recent experiences (short-term memory), and its output can be changed flexibly. In contrast, learning of CDt circuit is based on old-historical experiences (long-term memory), and its output is maintained stably. Their outputs are often the same, but can be different. This is important because the correct choice varies in the real world. Accordingly, CDh and CDt circuits are supported by spatially functionally different groups of DA neurons.

The main function of these parallel CD-SNr-SC circuits is object choice. For this purpose, both the direct and indirect pathways discriminate visual objects by their values and thereby control saccades. While the direct pathway focuses on good objects and facilitates saccade to them, the indirect pathway focuses on bad objects and suppresses saccade to them. These two functions together, especially the saccade suppression by the indirect pathway, are critical for choosing good objects among many bad objects. This mechanism was shown clearly for CDt circuit.

The object choice by saccade (or gaze) needs to be followed by other actions (e.g., reach, manipulate, eat) in order to obtain a rewarding outcome. It is likely that the basal ganglia contain...
multiple circuits, each of which controls a particular action. If so, action choice requires a mechanism that is different from object choice. To choose an action, other actions need to be suppressed. This may be accomplished by across–circuit interactions, especially through the indirect pathway. During evolution, the indirect pathway may have acquired multiple connections, which may have enabled the brain to use various kinds of behavioral choice. This is a hypothesis similar to the one presented before (Stephenson-Jones et al., 2011) and needs to be studied in future research.

Acknowledgements
This research was supported by the Intramural Research Program at the National Institutes of Health, National Eye Institute.

Conflict of interest
The authors declare no conflict of interests.

Author contributions
Okihide Hikosaka wrote the reviewed article. Hyoung F. Kim, Hitodoshi Amita Masaharu Yasuda, Masaki Isoda, Yoshihisa Tachibana and Atsushi Yoshida revised the reviewed article.

Abbreviations
CD, caudate nucleus; CDh, caudate head; edSNc, caudal-dorsal-lateral part of substantia nigra pars compacta; edSNr, caudal-dorsal-lateral part of substantia nigra pars reticulata; CDi, caudate tail; cvGPe, caudal-ventral part of globus pallidus internus; DA, dopamine; FEF, frontal eye field; GPe, globus pallidus externus; GPi, globus pallidus internus; LIP, lateral intraparietal cortex; pre-SMA, pre-supplementary motor area; RPE, reward prediction error; rvmSNc, rostral-ventral-medial part of substantia nigra pars compacta; rvmSNr, rostral-ventral-medial part of substantia nigra pars reticulata; SC, superior colliculus; SEF, supplementary eye field; SNr, substantia nigra pars reticulata; STN, subthalamic nucleus.

References
